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I received a number of responses to “Finance Is Not Physics” from academic and applied economists, finance professors and professionals, traders, risk managers, and financial engineers.  Many agreed with the general tenor of my argument while (not surprisingly) some of the physical scientists disagreed.  Physicist Alan Beilis’s “Rapid Response,” forthcoming in the Dec/Jan 1999 Risk Professional, is the most extreme reaction I saw.  I have no particular desire to prolong the exchange indefinitely, but I think it is worth pointing out one or two things about the responses to the essay, particularly Beilis’s response.

[Note: I wrote this reply on the basis of a pre-publication version of Beilis’s Rapid Response.  As it turned out later, Beilis’s Response was not published in Risk Professional.  Nevertheless, since I expand my views here, I’ll leave this as is.  Those who want Beilis’s manuscript can email me at itrac@itrac.com.]

Justification for mapping into math

As I asserted in the ‘Physics’ essay, without a substantive theory of markets to guide and justify the mapping of the objects, processes, and relationships of market systems into the terms and operators of differential equations, statistical formulas, or any other formalism, the structure and assumptions of the formalism perforce become the implicit theory.  In the absence of theoretical motivation for the mapping, differential equations and distribution-based statistics embody an untenable theory of human system behavior.

I was surprised to see Beilis illustrate my case.  In his “Rapid Response” Beilis gave examples of how mathematics can provide compact representations of “prototypes” (sic) in physics and finance.  (For “prototypes” read “models.”)  For physics he gave the formula for the force of gravitational attraction between two bodies, F = GMm/r2, where G is the universal gravitational constant, M and m are the masses of the two bodies, and r is the distance between their centers of mass.  This is the familiar inverse-square law of gravitational attraction.

Where do values for M and m come from?  Why plug values for the bodies’ masses into the equation rather than values for their shapes, sizes, compositions, densities, albedos, or some other property?  Because a powerful theory in physics, Newtonian mechanics, tells us that mass is the only relevant physical property of the two bodies in this problem.  There is very strong theoretical justification for mapping the property “mass” into the M and m terms.

As an example from finance, Beilis gave the stock price process, described by 
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 are the stock growth rate and volatility, respectively and dZ represents a Gaussian random process step.” 

Why use the standard deviation, σ, as the measure (representation) of volatility in the equation?  Solely because if one assumes that market returns are independently and identically distributed with a well-defined second moment, then under the central limit theorem the distribution of returns will converge to a normal distribution and then σ has some useful properties.  There are neither market-theoretical nor empirical grounds for using it; it is purely for mathematical convenience.  And why impute a Gaussian random process?  Again, neither theory nor data give us grounds.  It is purely for mathematical convenience: normal PDFs are easy to work with and have desirable mathematical properties.  There is no reason in the behavior of markets for it; indeed, there is substantial evidence against it.

Beilis’s examples illustrate my point.  In his physics example there is theoretical justification for mapping a specific property of matter into a mathematical representation, but in his finance example there is only mathematical convenience invoked in spite of a whole lot of evidence to the contrary.

Adaptation

With just one exception, none of the physical scientists who responded to “Finance Is Not Physics” alluded even indirectly to adaptation, which figured prominently in my essay and is a defining feature of biological and social systems.  The exception was Beilis’s mention of adaptive Kalman filters.  His suggestion of Kalman filtering as an example of physics’ contribution to modeling adaptation illustrates the gulf I identified.  Re-estimating coefficients in a regression equation in the light of recent forecast error seems a terribly strained analogy for adaptation in the sense that it occurs in human systems like markets.  In spite of being called “learning” by some physicists and engineers, the re-estimation procedure involves no extended memory for past events, past patterns of information, or past behavior, and thus it displays no learning in the sense of accrued experience.

Another correspondent, also a physical scientist, mentioned Ilya Prigogine’s Nobel-winning work on far-from-equilibrium dissipative systems, which is relevant to understanding some aspects of biological organisms and systems, most notably their ability to create and maintain (local and temporary) pockets of decreasing entropy.  An accessible presentation of Prigogine’s views on complex systems is his 1989 book “Exploring Complexity,” written with Gregoire Nicolis.  Nicolis and Prigogine wrote that “Living beings … serve as prototypes from which physical scientists can get both motivation and inspiration for understanding complexity.  They are literally historical structures, since they have the ability to preserve the memory of forms and structures acquired in the past, …” (p. 32).  Note the direction of borrowing (from biology to physics) and the emphasis on history.  However, though Nicolis and Prigogine discuss how the parameters of a dissipative system may be modified by the external environment in which it is embedded and with which it exchanges energy fluxes, “adaptation” does not appear in the book.

Problem-solving sets

Beilis says that “Mathematics, like language, is a tool.”  But language is not merely a tool.  Language both shapes thought and is an integral part of it.  The way we use language to represent a problem is a powerful determinant of how we will perceive, think about, and attempt to solve the problem.  Change the linguistic representation of a problem and our understanding of it will change and our approach to solving it will change.  A good deal of the basis of creative problem solving lies in the ability to shift among a variety of representations, linguistic and otherwise, exploiting the different approaches to solving and the different sets of candidate solutions that the various representations make available.

The strong default of physical scientists - the sort of default that cognitive psychologists call a problem-solving set - is explicit in Emanuel Derman’s description of how the quantitative analysis group he heads at Goldman Sachs goes about building models (“The Future of Modelling,” Risk, Dec 1997).  Derman, a physicist, says they build models by “isolating financial variables, studying their dynamical relationships, formulating them as differential equations or statistical affinities, solving them and, finally, writing the programs that implement the solution.”  The default is to represent (formulate) problems as differential (or difference) equations and statistical affinities.  Defaults are efficient when problems are similar, but when problems are dissimilar defaults can lead one seriously astray.

Language is not a neutral tool.  It is a powerful and selective means of problem representation.  The way a problem is represented puts implicit boundaries on the set of candidate solutions that will be considered.  And so it is with mathematics.  For example, cast a problem in a linear representation (e.g., a linear regression framework) and all one will look for (and all one will find) is linear solutions.  Beilis complained that I don’t know enough physics.  But cognitive psychology and anthropology (in both of which I hold degrees) are more useful in understanding human behavior, and biology and psychology provide better guidance in understanding the behavior of complex systems composed of human beings.  Markets are human social systems, more akin to biological systems than to physical systems.

It’s a pity that “thinking out of the box” has become a hackneyed cliché.  The phrase has useful implications if one understands what “box” really means and how many perceptual, cognitive, and behavioral boxes surround and constrain each of us.

Some differences between physical, biological, and social systems

There are significant qualitative differences between the kinds of systems that physical scientists are trained to deal with and the kinds of systems that are studied by biologists and social scientists.  Physical scientists typically deal with simple systems composed of relatively few kinds of entities whose relevant properties are well defined in corroborated theories, theories for which there is strong evidence.  Though there might be hundreds of trillions of molecules in a few milligrams of gas, the molecules of a pure gas are all identical to one another.  On the other hand, biologists and social scientists often deal with complex systems composed of many different kinds of entities.  Even when a social or biological system is composed of just one general kind of entity (for example, human beings), there are inevitably wide individual differences among the entities in properties we reasonably believe to be relevant.

The relevant properties of individual entities within classes in physical systems are typically identical and constant.  For example, the physical and chemical properties of water molecules are identical from molecule to molecule and they are constant through time.  Therefore one can analyze, theorize about, and model the properties of water as, say, a solvent without being concerned that the chemical properties of its constituent molecules will gradually change or that some subset of molecules will decide to alter their physical properties.  H2O is H2O.  (Of course, phase transitions - water boiling or freezing - are striking instances of abrupt changes in the mass behavior of physical systems, but the two characteristics, identity and constancy, hold on either side of the transition boundary.)

On the other hand, properties of the entities that compose social and biological systems change more-or-less continuously on (at least) two different time scales.  On a slow time scale, over generations biological evolution alters how organisms perceive stimuli, process information, and behave.  With respect to finance, changes in regulatory, political, technological, and macroeconomic environments can induce alterations in market systems in a manner that is roughly analogous to evolutionary change in biological systems.  On a finer time grain, individual organisms, traders in the case of markets, learn new ways of perceiving situations, new information-processing methods, and new behavioral skills during their lifetimes, sometimes daily.  Some of those innovations spread to other humans and in doing so they can produce profound changes in the behavior of the system as a whole.

History counts in human systems

History counts in social systems.  To illustrate what that means, consider a married couple who divorce, follow their own individual paths for a decade or two, and then re-encounter and remarry each other.  The nature of their second marriage will be very different from their first marriage as a result of the individual histories that preceded the second marriage.  Even if one could build a formal model of the couple’s behavior in the first marriage, a model constructed as models of physical systems are constructed, it would be inapplicable to the second marriage because their social dynamics would have changed as a function of their histories.

Contrast that with a water molecule that is dissociated into two constituents, H+ and OH-.  Suppose that each constituent follows its own path for a while, perhaps being temporarily associated with other atoms or molecules, and then through some miracle of alchemy the same two constituents encounter each other again and re-unite into a molecule of water.  The physical and chemical properties of their second incarnation as a water molecule will be indistinguishable from those of their first incarnation.  The previous histories of the two ions have no implications at all for the properties of the reconstituted molecule or for theories and models of its behavior.

Anyone who traded equities through the 1987 U.S. stock market crash, or traded currencies when the British pound and Italian lira were being squeezed out of the ERM in 1992, or traded fixed income during the bond liquidity crunch in late 1998 surely remembers the experience.  Those memories continue to influence interpretations of current circumstances and behavior with respect to them.  History counts in human systems.

The humans who compose social systems have group and individual histories and they selectively retain and use memories of those histories.  The properties and behaviors of the individuals change as a function of their histories.  As the individuals change, so the properties and behaviors of aggregations change.

Since each person has a unique history, there are generally wide individual differences among people within the system.  As a consequence, statistical summaries can be deceptive.  An average price summarizing the aggregate buying and selling behavior of market participants is a very different notion from the average kinetic energy of a huge number of molecules that is defined as the temperature of a mass.  While one can calculate a numerical average in both cases, the resulting numbers are summaries of quite different sorts of phenomena and have different meanings.  (An intuition underlies the last sentence that I can’t clearly verbalize yet but that I believe is real and important.  Though the intuition predates my reading of Farmer’s paper, it is related to some of the ideas discussed in Farmer’s “Market force, ecology, and evolution” mentioned below.)

Implications and alternatives

The differences between the natures of physical and social systems have implications for the sorts of models of market system dynamics one constructs, whether the models are logical or physical, computer simulations or mathematical expressions.  One cannot write a set of partial differential equations of fixed form for a system whose individual constituents and aggregate properties are constantly changing in ways that affect the system’s dynamics.  If one is sufficiently clever one might be able to devise a theory of the changes in properties that drive changes in dynamics, but it will be a theory (and associated modeling technology) that is quite different from those currently in vogue.  It will be a metadynamics, a dynamics of changing and evolving market system dynamics.  It will be able to handle the coupling between behaviors at the two time grains mentioned above and nonlinear dynamical behavior at both levels.

The most interesting features of biological and social systems, features like evolution, adaptation, and learning, are not directly rooted in the physical laws that govern planets and falling apples; they are not as ‘close’ to physical laws in causal terms as falling apples are.  One example of what I mean by “not as close in causal terms” has to do with time.  Dynamics describes changes in the state of a system through time.  “Time” is operationally defined in terms of some repetitively varying physical process – successive sunrises, a pendulum’s swing, piezoelectric vibrations in watch crystals, microwave emissions from cesium atoms, and so on.  Changes in the state of a physical system under analysis are thus directly referenced to another physical system, the one that defines time intervals.  One is comparing apples to apples: physical system to physical system.

But some researchers (physicists, in fact) have argued that markets have “intrinsic time” – sequences of changes in markets are inconsistently related to physical time.  As a consequence, plotting a sequence of states of a market (e.g., prices) on the ordinate of a graph against physical time on the abscissa will present a distorted picture of the dynamic behavior of that market, and symbolic representations of the graph – equations describing the price series -- will be similarly distorted.  This may be one reason that some recent approaches to very short-term mathematical market forecasting and automated trading using high-frequency price data appear to work while coarser-grained price series (say, daily data) seem more difficult to model and trade successfully with mechanical mathematical models.  The asynchronies between a market’s intrinsic time scale(s) and physical time may be less problematic when one is trading over short intervals using high-frequency data.  In any case, the dynamics of markets referenced to physical time are both more complex and, one might argue, different in kind from those of physical systems.

I do not object to the formalism of mathematical descriptions of phenomena.  Indeed, formalisms are necessary to a developed theory of a domain of phenomena.  What I object to is the importation of formalisms from one domain of phenomena into a conceptually unrelated domain without searching and critical inquiry regarding their appropriateness in the new domain.  John H. Holland, in “Hidden Order,” discusses requirements for a formal mathematical description of the dynamics of complex adaptive systems.  He concludes that we do not have the mathematical formalisms required: they do not (yet) exist.  Markets are complex adaptive systems.

That does not preclude building other kinds of formal models of such systems, though, if the modeling technology embodies what we know about their relevant properties and behavior.  Several alternatives are available, even leaving IntelliTrade’s modeling approach aside since Beilis objected to commercials.  Holland’s “Hidden Order” describes an agent-based approach loosely based on evolutionary biology that is a (partly realized) simulation model of complex adaptive systems in general. (For a discussion of the role of models in science, including mathematical models, see Holland’s 1998 book “Emergence: From Chaos to Order.”  In particular, see Holland’s remarks on correspondence relations between models and reality.)

Another approach that is specifically directed at modeling market behavior in the light of concepts from population biology is described in J. Doyne Farmer’s “Market force, ecology, and evolution.”  Farmer’s approach is of particular interest because he builds mathematical formalisms that are motivated by explicit and informed consideration of the properties and behavior of markets and market participants.  That is, there are thought-out and plausible reasons for the correspondences Farmer posits for mapping market entities and processes into the terms and operators of mathematical expressions.  That allows the results of manipulations of the mathematical expressions to be assigned meanings that refer to market behavior: one can interpret the mathematics in a way that can be coordinated with market behavior in the real world.

Farmer takes the notions of diversity, adaptation, and evolution seriously in building his formal model of a market.  It is not irrelevant that Farmer, a physicist by education and earlier career, has been directly associated with trading in his own firm, Prediction Company, for nearly a decade.  Trading real money tends to focus one’s attention on actual market behavior rather than on mathematical convenience.  A daily equity run is a powerful selective force.

I don’t suggest that financial engineering is wholly useless.  I have had experience in a trading firm that made substantial money in part because it had sophisticated options pricing models built by mathematicians.  As Beilis pointed out, financial engineering has important applications in pricing certain sorts of instruments.  But I do assert that the differences between physical systems and social systems are such that formalisms originally invented to describe the dynamics of physical systems need to be treated with great caution when they are extended to the dynamics of markets.

The question in trading and risk management is not just ‘What is the state of the market today?’ but also “What is its state likely to be tomorrow?’  The former is a question about the current status of the system.  The latter is a question in dynamics and that is where the differences between physical and social systems become salient and where mathematical models appropriate to physical systems can become deceptive and dangerous.  It is noteworthy that Beilis’s physics example is an equation describing the instantaneous state of a system whereas his finance example is an equation that purports to represent stock price dynamics.  That is precisely where the problem lies.

In another paper Farmer reported that economist Lawrence Summers (now Secretary of the Treasury) accused (sic) physicists of displaying what Summers called a “Tarzan complex” at a 1988 joint conference with economists (“Physicists Attempt to Scale the Ivory Towers of Finance,” 1999 Sante Fe Institute Working Paper).  As I recall the Edgar Rice Burroughs novel, after Tarzan was found in darkest Africa he went to England to take up life as the rightful Lord Greystoke.  But he finally fled the complexities of the social environment of 19th century London and returned to the jungle that he had learned to cope with as a boy.
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